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Abstract. We present an investigation of the boundary breather states of the sinh–Gordon model
restricted to a half-line. The classical boundary breathers are presented for a two-parameter
family of integrable boundary conditions. Restricting to the case of boundary conditions which
preserve theφ → −φ symmetry of the bulk theory, the energy spectrum of the boundary states is
computed in two ways: firstly, by using the bootstrap technique and subsequently, by using a WKB
approximation. Requiring that the two descriptions of the spectrum agree with each other allows a
determination of the relationship between the boundary parameter, the bulk coupling constant and
the parameter appearing in the reflection factor derived by Ghoshal to describe the scattering of the
sinh–Gordon particle from the boundary.

1. Introduction

In recent years, there has been renewed interest in field theories defined on restricted domains.
In particular, integrable two-dimensional models, for example affine Toda field theories, may
be confined to a half-line or an interval by boundary conditions which maintain integrability
[3, 5, 16, 25] (for a partial review, see [7]). The variety of possibilities is intriguing, although
in most Toda theories the freedom to choose boundary conditions is severely limited to a finite,
discrete set of possibilities. In fact, within the models based on thea(1)n , d

(1)
n or e(1)n data, only

the model based ona(1)1 , the sinh–Gordon model, allows parameters to be introduced as part
of the boundary conditions [1].

An outstanding question concerns the quantum integrability of models with boundaries
and although there has been some progress towards understanding particular examples, mostly
within the class of models based on thean series, there remains much to be done to discover
the systematics underpinning the apparently bewildering variety of cases.

Even within the sinh/sine–Gordon model, about which so much is now known, there
remain some open questions. Up to the present there appears to be a gap in the understanding
of how the boundary data, which is prescribed in order to formulate the boundary conditions of
the model, is related to the parameters appearing in the family of reflection factors describing
particle-boundary scattering. Finding this relationship needs the answers to dynamical
questions which cannot be resolved by general requirements such as the reflection Yang–
Baxter equation, or ‘crossing-unitarity’. In this paper we shall examine the sinh–Gordon
model restricted to a half-line by boundary conditions preserving its bulk symmetry and for
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which one expects boundary bound states, and we shall approach the boundary bound states
from two points of view. On the one hand, we will calculate their spectrum using a semiclassical
approach rooted in the classic work of Dashenet al [12] while, on the other hand, we will
compute the same data using bootstrap techniques. The marriage of the two approaches will
yield strong evidence for a conjectured relationship between the reflection factors and the
boundary data.

2. The sinh–Gordon model on the half-line

The sinh–Gordon model describes a single real scalar fieldφ in 1 + 1 dimensions with
exponential self-interaction. The field equation is

∂2
t φ − ∂2

xφ +

√
8m2

β
sinh(
√

2βφ) = 0 (2.1)

wherem andβ are parameters and we have used normalizations customary in affine Toda field
theories of which the sinh–Gordon model is the simplest example [2]. The dimensional mass
parameterm will be set to unity.

In contrast to the sine–Gordon model with its soliton and breather solutions the sinh–
Gordon model has only one real non-singular classical solution, namely the constant vacuum
solutionφ = 0. In the quantum theory the small oscillations around this vacuum correspond
to the sinh–Gordon particle.

The sinh–Gordon model is integrable which implies, in particular, that there are infinitely
many independent conserved chargesQ±s , wheres is any odd integer, and theS-matrix
describing the scattering ofn sinh–Gordon particles factorizes into a product ofn(n − 1)/2
two-particle scattering amplitudes. The scattering between two particles of relative rapidity2

is conjectured to be given by theS-matrix factor [14, 28]

S(2) = − 1

(B)(2− B) (2.2)

where we have used the convenient block notation [2]

(x) = sinh
(

1
22 + 1

4iπx
)

sinh
(

1
22− 1

4iπx
) (2.3)

and the coupling constantB is related to the bare coupling constantβ byB = 2β2/(4π +β2).
Traditionally, scattering and other properties of the sinh–Gordon model have been obtained
from knowledge of the lowest breather in the sine–Gordon model by analytic continuation in
the coupling constant (but, see also [26]).

The sinh–Gordon model can be restricted to the left half-line−∞ 6 x 6 0 without losing
integrability by imposing the boundary condition

∂xφ
∣∣
0 =
√

2m

β

(
ε0 exp

[
− β√

2
φ(0, t)

]
− ε1 exp

[
β√
2
φ(0, t)

])
(2.4)

whereε0 and ε1 are two additional parameters [16, 21]. This set of boundary conditions
generally breaks the reflection symmetryφ → −φ of the sinh–Gordon model. However, the
symmetry is preserved whenε0 = ε1 ≡ ε and much of this paper will be devoted to this special
case.

To describe the sinh–Gordon particles on the half-line one needs in addition to the two-
particle scattering amplitude (2.2) also the amplitude for the reflection of a single particle from
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the boundary. This reflection amplitude can be deduced from the lowest breather reflection
amplitude in the sine–Gordon model by analytic continuation in the coupling constant (i.e. the
continuationλ → −2/B in the notation of [16]). Using the breather reflection amplitudes
calculated by Ghoshal [17] gives†

K(θ, ε0, ε1, β) = (1)(2− B/2)(1 +B/2)

(1− E(ε0, ε1, β))(1 +E(ε0, ε1, β))(1− F(ε0, ε1, β))(1 +F(ε0, ε1, β))

(2.5)

where we are again using the block notation from (2.3) but in (2.5)θ represents the rapidity of
a single particle. When the bulk reflection symmetry is preserved one of the two parameters
E or F vanishes. We shall chooseF = 0, and consequently one obtains

K0(θ, β) ≡ K(θ, ε, β) = (2− B/2)(1 +B/2)

(1)(1− E(ε, β))(1 +E(ε, β))
≡ KD 1

(1− E)(1 +E)
. (2.6)

Actually, the first factor,KD is the reflection factor corresponding to the Dirichlet boundary
conditionφ(0, t) = 0, as noted in [16, 17]. All reflection factors satisfy the crossing-unitarity
relation which, in the case of scalar reflection factors, reads

K
(
θ + 1

2iπ
)
K
(
θ − 1

2iπ
)
S(2θ) = 1. (2.7)

The Dirichlet reflection factorKD satisfies (2.7) by itself.
In this paper we note that contrary to the situation on the whole line, the sinh–Gordon

equation restricted to a half-line by integrable boundary conditions has non-singular, finite
energy, breather solutions. After quantizing, these will lead to a spectrum of boundary bound
states which ought to match not only the physical strip poles of the expression (2.6) but also the
poles appearing in similar expressions derived from (2.6) using the boundary bootstrap. These
derived reflection factors will be determined below and represent the sinh–Gordon particle
reflecting from the excited boundary states. Matching the two ways of looking at the energies
of the excited states will determine a relation betweenε, β andE, see equation (5.29). In
fact the relationship between the two parameters coincides with a tentative suggestion made
in [8].

A similar analysis is feasible in the general case (ε0 6= ε1) but it will not be carried out here.
However, the associated boundary breathers and a few of their properties will be described as
an essential preliminary to a fuller investigation.

3. Boundary breathers

The sinh–Gordon model on the whole line has no non-singular real solutions other thanφ = 0.
However, there are singular real breather solutions satisfying the boundary condition (2.4)
whose singularities can be designed to lie for all time on the right half-line (x > 0). Thus, they
are well defined periodic solutions of the sinh–Gordon model on the left half-line and we shall
call themboundary breathers. Following Hirota, with suitable choices ofτj , the solutions can
be written conveniently in the form [18]

φ =
√

2

β
ln
τ0

τ1
. (3.1)

† In Ghoshal’s notationE = Bη/π, F = iBϑ/π .
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For the symmetrical boundary conditions withε0 = ε1 = ε, appropriate choices are

τj = 1 + (−1)j2 cos(2t sinρ) e2x cosρ 1

tanρ

√
ε + cosρ

ε − cosρ
− e4x cosρ

(
ε + cosρ

ε − cosρ

)
(3.2)

where the parameterρ determines the frequency of the breather.
In order for theτ functions to be real, the square root appearing in (3.2) must be, which

in turn requires that|ε| > cosρ. Also, the solution will be singular whenever one of theτ
functions is zero. While singularities cannot be avoided entirely it is possible to ensure that
there are none in the regionx 6 0, and that is sufficient for the present purpose. Noting that
for a particularx singularities cannot occur at any time provided

1<

∣∣∣∣ tanρ(1− e4 cosρx((ε + cosρ)/(ε − cosρ)))

2e2 cosρx
√
(ε + cosρ)/(ε − cosρ)

∣∣∣∣ (3.3)

we deduce that requiring there are no singularities on the left half-line is equivalent to the
restrictions

−1< ε < 0 and cosρ < −ε. (3.4)

Note that at cosρ = −ε the solution collapses to the vacuum solutionφ = 0, indicating that
there is a minimum allowed frequency for a breather which is strictly greater than zero. This
is a distinctive feature not shared by the usual breathers of the sine–Gordon model on the full
line whose frequencies may approach zero.

The energy functional of the sinh–Gordon model with boundary condition (2.4) is

E [φ] =
∫ 0

−∞
dx

(
1

2
φ̇2 +

1

2
φ′2 +

2

β2
(cosh(

√
2βφ)− 1)

)
+

2

β2

(
ε0

(
exp

[
− β√

2
φ(0, t)

]
− 1

)
+ ε1

(
exp

[
β√
2
φ(0, t)

]
− 1

))
(3.5)

but it is most easily calculated in terms of theτ functions as a boundary term [10],

E [φ] = 2

β2

(
ε0

(
τ0

τ1
− 1

)
+ ε1

(
τ1

τ0
− 1

)
−
(
τ ′0
τ0

+
τ ′1
τ1

))∣∣∣∣
x=0

. (3.6)

The energy of the real boundary breather turns out to be given by

Ebreather= 8

β2
(− cosρ − ε) (3.7)

and the condition (3.4) ensures thatEbreatheris always positive, or zero if cosρ = −ε.
In the quantum theory, the continuum of boundary breather solutions is expected to lead to

a discrete spectrum of boundary states. To obtain an estimate for the energies of these boundary
states one might in the first instance use the Bohr–Sommerfeld quantization condition (see,
for example, [4]). One proceeds directly by calculating the left-hand side of∫ T

0
dt
∫ 0

−∞
dx π(x, t) φ̇(x, t) = (2n + 1)π (3.8)

whereπ(x, t) = φ̇ is the momentum conjugate toφ, T = π/ sinρ is the period of the breather
andn is an integer. (As usual, we have put ¯h = 1.)

It is convenient to setε = cosπa, 1> a > 1
2, implying that cos−1(−ε) = π(1− a), then

integrating gives∫ T

0
dt
∫ 0

−∞
dx φ̇2 = 8π

β2
(ρ − π(1− a)). (3.9)
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The energy levels follow from (3.8) yielding

En = 8

β2

(
− cosπa + cosπ

(
(n + 1

2)
β2

4π
− a

))
. (3.10)

Since the breathers approach the vacuum solution asρ → π(1− a) by reducing their
amplitudes to zero rather than their frequencies, it is natural that the boundary breather spectrum
should have a zero point energy. This is the reason for the postulated form of the right-hand
side of (3.8).

The difference between two consecutive bound state energies is readily deduced from
(3.10) and is conveniently written as

En+1− En = 16

β2
sin
(

1
8β

2
)

cos
π

2

((
n + 1

)(
β2

2π

)
− 2a + 1

)
. (3.11)

It will be seen below that this has the form we would have anticipated from the boundary
bootstrap. However, given that we know that the coupling constant renormalizes, and we
expect the boundary coupling to renormalize too [22], the outcome of this calculation can be
at best an indication. A more reliable method for quantizing the boundary breathers is likely
to be an adaptation of the techniques developed by Dashenet al [12] and this will be pursued
in section 5.

Finally, we shall end this section with a brief description of the boundary breathers in
those cases where the boundary conditions break the bulk symmetry. As before, the solutions
have the general form indicated by (3.1) but this time the two tau functions are more elaborate
and are given by

τj = 1 + (−1)j
(

2
s

tanρ
cos(2t sinρ) exp(2x cosρ)

+
r

tan2(ρ/2)
exp(2x)− rs2 tan2 ρ

2
exp 2x(2 cosρ + 1)

)
−
(

2
rs

tanρ
cos(2t sinρ) exp 2x(cosρ + 1) + s2 exp(4x cosρ)

)
(3.12)

where

r = sin 1
2πa0 − sin 1

2πa1

sin 1
2πa0 + sin 1

2πa1

s2 = (1 + cosρ)
(
cos1

2π(a0 + a1) + cosρ
)(

cos1
2π(a0 − a1)− cosρ

)
(1− cosρ)

(
cos1

2π(a0 + a1)− cosρ
)(

cos1
2π(a0 − a1) + cosρ

) (3.13)

anda0 anda1 are related to the boundary parameters by

ε0 = cosπa0 ε1 = cosπa1.

Numerical investigation of these boundary breathers indicates that they are non-singular in the
regionx < 0 provided

0< cosρ < − cos1
2π(a0 + a1) cos1

2π(a0 + a1) < 0 cos1
2π(a0 − a1) > 0

their energies are given by

E = 4

β2

(−2− 2 cosρ +
(
sin 1

2πa0 + sin 1
2πa1

)2)
. (3.14)
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Again, the breathers have frequencies bounded from below because the(a0, a1) parameters are
restricted. For example, they could lie within the ranges−1< a0 − a1 < 1, 1< a0 + a1 < 2
in the positive quadrant. The boundary breathers for boundary conditions preserving the
symmetry of the sinh–Gordon equation are included as the special casea0 = a1. The possibility
a0 = −a1 is outside the range.

These solutions may be considered as a superposition of a static ‘soliton’ and a ‘boundary
breather’, carefully designed to be real and non-singular, and to satisfy the general boundary
condition (2.4). They are sinh–Gordon counterparts of the sine–Gordon solutions considered
by Saleuret al [24].

4. The boundary bootstrap

For certain ranges of values of the parametersE andF the particle reflection amplitude (2.5)
has simple poles at particular values ofθ on the physical strip, 0< Im θ < π/2. For the
case ofF = 0 these must† be due to the propagation of virtual excited boundary states. The
amplitudes for the reflection of the sinh–Gordon particle from these excited boundary states is
obtained by the boundary bootstrap [5, 15, 16]. When the reflection factor (2.5) has a pole at
θ = iψ with 0 < ψ < π/2 then the reflection factor corresponding to the associated excited
boundary state is calculated via the relation

K1(θ) = K0(θ)S(θ − iψ)S(θ + iψ) (4.1)

whereS(θ) is the two-particleS-matrix (2.2). Also, since energy is conserved, the energy of
the excited boundary state is given by

E1 = E0 +m(β) cosψ (4.2)

wherem(β) is the mass of the sinh–Gordon particle.
Considering the caseF = 0, the regions in E where the amplitude (2.6) has poles on the

physical strip are

(I) 2 > E > 1

(II) −2< E < −1
(4.3)

since 06 B 6 2, the other factors (inKD) never have poles in the physical strip. In region I,
ψ = π(E − 1)/2 and, using (4.1), we derive the reflection factor for the first excited state,

K1 = KD 1

(1− E)(1 +E)

(1 +E +B)(1− E − B)
(1− E +B)(1 +E − B). (4.4)

This in turn has a new pole atψ = π(E − 1− B)/2 providedB < E − 1, indicating another
excited state whose reflection factor is

K2 = KD 1

(1− E +B)(1 +E − B)
(1 +E +B)(1− E − B)
(1− E + 2B)(1 +E − 2B)

. (4.5)

Continuing in this vein leads to a set of excited states with associated reflection factors given
by

Kn = KD 1

(1− E + (n− 1)B)(1 +E − (n− 1)B)

(1 +E +B)(1− E − B)
(1− E + nB)(1 +E − nB) . (4.6)

† Because there is no three-point coupling in the sinh–Gordon model with a symmetrical boundary condition, simple
poles on the physical strip can never be due to a generalized Coleman–Thun mechanism [13].
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Note that the pole corresponding to the (n+ 1)st state will be within the correct range provided
E satisfies 2> E > 1 +nB. Thus, for a givenE andB there can be at most a finite number
of bound states, and possibly none. Note too that the reflection factor for scattering from the
nth bound state also contains a pole corresponding to the (n− 1)st bound state. We shall see
that there is a subtlety concerning the coefficient of this pole because it develops a zero at an
n-dependent critical value ofβ.

The energies of the boundary states are given by repeatedly applying (4.2) and satisfy

En+1 = En +m(β) cos1
2π(nB − E + 1). (4.7)

This is the result that we wish to compare with the quantization of the classical breather
spectrum in order to determineE(ε, β) andm(β). However, we shall defer the comparison
until after we have developed the Dashenet al’s argument in the present context.

5. Semiclassical quantization

To carry out the semiclassical calculation it is first necessary to solve the sinh–Gordon equation
linearized in the presence of the boundary breathers. Settingφ = φ0 + η, the linear wave
equations for the fluctuations are

∂2η

∂t2
− ∂

2η

∂x2
+ 4η cosh

√
2βφ0 = 0

(
∂η

∂x
+ 2εη cosh

βφ0√
2

)
x=0

= 0. (5.1)

It is convenient to solve (5.1) by perturbing (3.1); in other words, we take

η = τ1δτ0 − τ0δτ1

τ0τ1
(5.2)

with δτj chosen as follows:

τj + δτj = 1 + (−)j (e1 + e2 +E1 +E2) +A12E1E2 + e1(µ11E1 +µ12E2)

+e2(µ21E1 +µ22E2) + (−)jA12E12(µ11µ12e1 +µ21µ22e2). (5.3)

In (5.3) we have made use of the Hirota expression for the general multi-soliton solution to the
sine–Gordon equation [18, 19], suitably adapted to solve the sinh–Gordon equation, keeping
terms up to first order ine1 ande2. The various quantities are given by:

e1 = λ1e−iωt+ikx e2 = λ2e−iωt−ikx ω2 − k2 = 4

E1 = exp(2x cosρ + 2it sinρ + x0) E2 = exp(2x cosρ − 2it sinρ + x0)

A12 = − tan2 ρ ex0 = 1

tanρ

√
ε + cosρ

ε − cosρ

µ11 = 1

µ22
= 4 + 2ω sinρ − 2ik cosρ

−4 + 2ω sinρ − 2ik cosρ
µ12 = 1

µ21
= −4 + 2ω sinρ + 2ik cosρ

4 + 2ω sinρ + 2ik cosρ

(5.4)

whereλ1 andλ2 are small parameters. Matching the boundary condition atx = 0 fixes the
ratioλ2/λ1 to be

KB = λ2

λ1
= µ11µ12

ik + 2ε

ik − 2ε
= (ik + 2 cosρ)2

(ik − 2 cosρ)2
(ik + 2ε)

(ik − 2ε)
. (5.5)

In the limit x →−∞,

η ∼ λ1e−iωt
(
eikx +KBe−ikx

)
(5.6)
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defining the classical reflection factor corresponding to the boundary breather. Taking
cosρ = −ε, the breather collapses to the vacuum solutionφ0 = 0 and the reflection factor
collapses to

K0 = ik + 2ε

ik − 2ε
≡ − 1

(1− 2a)(1 + 2a)
. (5.7)

The ground state reflection factor is easily checked directly and it is theβ → 0 limit of the
reflection factor given in (2.6). Hence, we may deduce thatE(0) = 2a.

The classical action of the boundary breather is calculated to be

Scl =
∫ T

0
dt
∫ 0

−∞
dx L = 8π

β2

(
ρ − π(1− a) +

cosρ + cosπa

sinρ

)
(5.8)

and vanishes as it should when cosρ = −ε, i.e.ρ = π(1− a).
The periodT = π/ sinρ of the boundary breather defines the ‘stability angles’ via

η(t + T , x) = e−iνη(t, x) ≡ e−iωT η(t, x) (5.9)

and the field-theoretical version of the WKB approximation makes use of the stability angles
together with a regulator to calculate a quantum action. The standard procedure would be
to place the field theory in an interval [−L,L] with periodic boundary conditions and to
manipulate the sum over the discrete stability angles thus obtained. However, that option is
not available in this case. Instead, it is convenient to treat the sinh–Gordon model in the interval
[−L, 0] and to impose the Dirichlet conditionη(t,−L) = 0. Since the limitL→∞ will be
taken eventually, the stability angles for the boundary breather (νB), or the vacuum solution
(ν0) are effectively determined by the reflection factors given in (5.6) or (5.7), respectively.

Following [12, 23] we need to calculate a sum over the stability angles and use it to correct
the classical action. Thus,

1 = 1
2

∑
(νB − ν0) ≡ 1

2T
∑(√

k2
B + 4−

√
k2

0 + 4
)

(5.10)

wherekB andk0 are the sets of (discrete) solutions to

e2ikBL = − (ikB + 2 cosρ)2

(ikB − 2 cosρ)2
(ikB + 2ε)

(ikB − 2ε)
e2ik0L = − ik0 − 2ε

ik0 + 2ε
. (5.11)

Once1 is known the quantum action is defined by

Squ = Scl −1. (5.12)

One way to proceed is to note that for largek the solutions to either of (5.11) are close to

kn =
(
n + 1

2

)π
L

and so it is reasonable to set(kB)n = (k0)n + κ((k0)n)/L where, forL large, the functionκ is
given approximately by

e2iκ(k) = (ik + 2 cosρ)2

(ik − 2 cosρ)2
(ik + 2ε)2

(ik − 2ε)2
. (5.13)

In terms ofκ the expression (5.10) is rewritten as

1 ∼ T

2L

∑
n>0

(k0)nκ((k0)n)√
(k0)2n + 4

+ O(1/L2)
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and this, in turn, asL→∞ can be converted to a convenient (but actually divergent) integral,

1 = T

2π

∫ ∞
0

dk
kκ(k)√
k2 + 4

(5.14)

with which we shall have to deal. Note thatκ vanishes when cosρ = −ε.
Integrating (5.14) by parts we find

1 = T

2π

(
κ
√
k2 + 4

∣∣∞
0 −

∫ ∞
0

dk
dκ

dk

√
k2 + 4

)
(5.15)

where
dκ

dk
= 4 cosρ

k2 + 4 cos2 ρ
+

4 cosπa

k2 + 4 cos2 πa
(5.16)

and we note that with a suitable choice of branch

κ ∼ −4 cosρ

k
− 4 cosπa

k
as k→∞. (5.17)

From (5.17) and recalling that cosρ < −ε, we deduce thatκ approaches zero from above as
k→∞. Also, from (5.16) it is clear that the derivative ofκ is positive neark = 0 but negative
ask→∞. Hence, the first term in (5.15) is well defined and the appropriate branch ofκ has
κ(0) = 0. On the other hand, the derivative ofκ is not decaying sufficiently rapidly to ensure
that the second term in (5.15) is finite. However, this was to be expected since a perturbative
analysis of the sinh–Gordon model confined to a half-line needs mass and boundary counter
terms to remove logarithmic divergences (which would be removed automatically by normal-
ordering the products of fields in the bulk theory). With this in mind, the integral remaining
in (5.15) should be replaced by∫ ∞

0
dk
√
k2 + 4

(
4 cosρ

k2 + 4 cos2 ρ
− 4 cosρ

k2 + 4
+

4 cosπa

k2 + 4 cos2 πa
− 4 cosπa

k2 + 4

)
(5.18)

the first counter-term removing the bulk divergence and the second being there to remove a
similar divergence associated with the boundary. In effect, we are regarding the parametera

as describing the bare coupling which appears in the boundary part of the Lagrangian once
it is written in terms of normal-ordered products of fields. The counter-terms clearly respect
the symmetry and the whole expression vanishes whenρ = π(1− a). The integrals in (5.18)
need to be treated carefully with an eye to the fact that cosρ > 0 but cosπa < 0.

Assembling the various components leads to

1 = − 2

sinρ
(cosρ + cosπa + ρ sinρ − π(1− a) sinπa). (5.19)

Recalling (5.8), and using (5.19), the quantum action defined in (5.12) is given by an expression
of the form

Squ = 4

B

(
cosρ

sinρ
+ ρ − π

2

)
+

8π

β2

(
πa − π

2

)
+
0(a)

sinρ
+ π (5.20)

where0 is independent ofρ,

0 = 4

B
cosπa + 2π(a − 1) sinπa. (5.21)

Once the quantum action is determined the quantum energy is defined by

Equ = −∂Squ

∂T
= sin2 ρ

π cosρ

∂Squ

∂ρ
= − 4

πB
cosρ − 0

π
(5.22)
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and the WKB quantization condition states that

Wqu = Squ + T Equ = 4

B

(
ρ − 1

2π
)

+
8π

β2

(
πa − 1

2π
)

+ π = 2Nπ. (5.23)

Here,N = n+N0 with n a positive integer or zero, and we expectN0 should be1
2. Hence, the

energies of the quantized boundary breather states are determined by a set of special angles
ρn,

ρn = π

2

(
1 +B

(
N − 1

2

)− 2πB

β2
(2a − 1)

)
(5.24)

and given by

En = − 4

πB
cosρn − 0

π
= − 4

πB
cos

π

2

((
N − 1

2

)
B + 1− 2πB

β2
(2a − 1)

)
− 0
π
. (5.25)

Notice that asβ → 0, ρn→ π(1− a) independently ofN . Thus, the frequencies collapse to
the lowest allowed frequency, namelyω0 = 2 sinaπ . On the other hand, in the same limit the
energies are independent ofβ and non-zero,

En→ Nω0. (5.26)

This is precisely the spectrum of a harmonic oscillator vibrating at the fundamental frequency
ω0 provided we setN = n+ 1

2. With this interpretation, the vacuum has a non-zero zero-point
energy due to the presence of the boundary.

Using (5.25) the corresponding differences in the energy levels are given by

En+1 = En +
8

πB
sin

πB

4
cos

π

2

(
2πB

β2
(2a − 1)−NB

)
. (5.27)

Comparing (5.27) with the outcome of the bootstrap calculation (4.7) ought to assist us in
identifying the unknown parameterE which appeared in the expression for the reflection
factor (2.6). Thus, from the first excited level we deduce

E − 1= 2πB

β2
(2a − 1)−N0B ≡ (2a − 1)

(
1− 1

2B
)−N0B. (5.28)

Rearranging, we have

E(ε, β) = 2a
(
1− 1

2B
)

+ (1− 2N0)
1
2B. (5.29)

Taking the limit asa→ 1
2 from above, equation (5.29) is in agreement with the expression

given by Ghoshal and Zamolodchikov for the Neumann condition providedN0 = 1
2 [16].

With a arbitrary, equation (5.29) agrees both with perturbative calculations to orderβ2 given
in [8, 27], and with a conjectured all-orders guess reported in [8]. OnceN0 is chosen, the other
excited states match up in the two calculations without any further adjustments.

In the bulk sine–Gordon theory the analogous quantity toN0 vanishes in Dashenet al’s
calculation of the breather spectrum. In the half-line theory, we have found that the two ways
of regarding the spectrum of boundary bound states match providedN0 = 1

2. Although we
do not yet have an independent reason for expecting this value ofN0 on the basis of WKB
theory, its appearance in (5.23) is reminiscent of the extra1

2 correction to the Bohr–Sommerfeld
quantization condition and it also provides a natural interpretation of the limiting spectrum
(5.26)
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The comparison with (4.7) also permits us to deduce an expression form(β), the mass of
the sinh–Gordon particle:

m(β) = 8

πB
sin

πB

4
. (5.30)

This is independently interesting. Previously, the same expression for the mass has been
deduced via analytic continuation using knowledge of the sine–Gordon breather spectrum on
the whole line. However, here it arrives naturally within the context of the sinh–Gordon model
itself. It appears that once the model is defined over a restricted region by boundary conditions
which permit the existence of boundary states, boundary effects allow bulk parameters to be
determined. Notice that periodic boundary conditions, which are in some respects the most
natural to impose, and are certainly the traditional choice, do not share this property.

6. Discussion

In this section we need to take another look at the two descriptions of the boundary bound state
spectrum. Using what we have learned, the boundary states are described by two different sets
of angles which are linear functions ofB. From the WKB calculation we have the setρn given
by

ρn = π(1− a) + 1
2π
(
n + a − 1

2

)
B n = 0, 1, 2, 3, . . . . (6.1)

The ground state corresponds toρ0 and lies in the spectrum for all values ofB. This is clear
because asB traverses its range from 0 to 2,ρ0 increases fromπ(1− a) to π/2. On the other
hand,ρn, n > 1 corresponds to an excited state which will leave the spectrum at some critical
value ofB whenρn attainsπ/2. Specifically, the critical couplings are given by

Bcn =
2(2a − 1)

2n + 2a − 1
or

βc2n

4π
= 2a − 1

2n
. (6.2)

The other description is derived from the bootstrap. Taking the conjectured form ofE,
equation (5.29) withN0 = 1

2, leads to another set of anglesψn defined by

ψn = 1
2π(2a − 1− (a + n− 1)B) n = 1, 2, 3, . . . . (6.3)

Although these describe the same set of states via the bootstrap, the angles are clearly very
different. One striking difference concerns the critical value of the couplingBc′n at which the
state exits the spectrum. The angles (6.3) clearly decrease with increasingB and the critical
point is reached when an angle vanishes. Thus, we have

Bc′n =
2a − 1

a + n− 1
or

βc′ 2n

4π
= 2a − 1

2n− 1
. (6.4)

The two critical points (6.2) and (6.4) are similar but not the same. Curiously, in terms of the
inverse coupling the difference is independent ofn:

4π

βc2n
− 4π

βc′ 2n

= 1

2a − 1
.

The fact that the two critical points are different needs explanation. Unfortunately, we do not
have a complete dynamical explanation of this. The problem is that a bound state appears to
leave the spectrum before the pole marking it in a reflection factor moves out of range.

Consider the bound state with labeln. At the associated rapidity iψn there is a pole in
the two reflection factorsKn−1 andKn. In the first of these, the pole indicates the possibility
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of exciting the staten− 1 to the staten; in the second it indicates the possibility of dropping
from staten down to staten − 1. In both cases, of course, the process is virtual, but in the
second case the process corresponds to a ‘crossed’ diagram. Of the various parts in (4.6), the
one which produces the cross-channel pole is(1− E + (n − 1)B), one of the factors in the
denominator. At the critical coupling this is cancelled by the factor(1− E + nB) because,
at the critical valueBcn, 2E − (2n − 1)B = 2. This is consistent with a zero in theS-matrix
(2.2) at iπBcn/2 which contributes to the cross-channel diagram. For values of the coupling
between the two critical values, the pole at iψn in Kn−1 needs explanation.

That the pole indicating a bound state can persist beyond the value of the coupling at
which the bound state ceases to exist is a phenomenon familiar in the breather spectrum of
the bulk sine–Gordon model. In the notation we have been using, we simply make the change
β → iβ and redefineB(iβ) = −b. Then, thenth breather leaves the spectrum atb = 2/n.
This is typically signalled by the appearance of double poles inS-matrices, rather than the
pole position moving across the boundary of the physical strip. However, in this case, the
explanation for the pole beyond the critical coupling lies in a Coleman–Thun mechanism
using solitons†.

A second point we wish to discuss is the following. Given the expression forE,
equation (5.29) withN0 = 1

2, we see immediately that if the parametera is held fixed as
B → 2, thenE→ 0, and every reflection factor (4.6) has the same limit

Kn→− 1

(1)2
. (6.5)

The latter is the classical reflection factor corresponding to the boundary condition (2.4) with
ε0 = ε1 = 1 [6]. It is natural to suppose that the same expression forE(ε, β)will be appropriate
for ε > 0 although we cannot prove it. However, if it is the case, then almost all reflection
factors will have the property (6.5). The exception to this is the symmetrical Dirichlet condition
whose reflection factor has the propertyKD(4π/β) = KD(β); that is,KD is self-dual. Apart
from noting the phenomenon we can offer no explanation as to why one particular nonlinear
boundary condition should be singled out to be the limit point of almost all the others. It will
be interesting to discover whether this remains so after the complete analysis of the general
caseε0 6= ε1. It is perhaps worth remarking that this special boundary condition is one of the
two singled out in the supersymmetric version of the model [20] (for the otherε0 = ε1 = −1).
If the expression forE is also correct forε > 0 thenE(1, β) ≡ 0, indicating that this specially
symmetrical boundary condition also has a self-dual reflection factor. Perhaps this is also true
for the model with supersymmetry.

In this paper, we have obtained the expression (5.29) forE in terms of the parametera.
However, there is an indication from work on highera(1)n Toda theories that the renormalized
boundary parameter is notE itself butG = E +B/2. In these theories, forn > 1, there is only
a discrete set of integrable boundary conditions and for many of these the reflection factors are
known [11]. These reflection factors can be specialized to the casen = 1 which corresponds to
the sinh–Gordon model and one obtains the reflection factor (2.6) at fixed (coupling-constant-
independent) values ofG = E + B/2 rather than fixed values ofE. Further motivation for
regardingG = E +B/2 as the physical boundary parameter comes from the study of solitons
in the sine–Gordon model on the half-line [9].

Finally, it must be said that the WKB method gives an all-orders result in terms ofβ and
is exact for the bulk sine–Gordon model. Again, we would probably be surprised if that were
not the case in the present setting.

† We thank Patrick Dorey for pointing this out to us.



Boundary breathers in the sinh–Gordon model 8613

Acknowledgments

One of us (GWD) is supported by an EPSRC Advanced Fellowship and both of us have
been partially supported by a TMR Network grant of the European Commission contract
number FMRX-CT-960012. EC thanks Network partners at ENS-Lyon and LAPP-Annecy,
and the Institute for Theoretical and Experimental Physics, Moscow, for providing inspiring
surroundings at various stages of this work. We are grateful to Patrick Dorey, Brett Gibson
and Gerard Watts for conversations.

References

[1] Bowcock P, Corrigan E, Dorey P E and Rietdijk R H 1995 Classically integrable boundary conditions for affine
Toda field theoriesNucl. Phys.B 445469

(Bowcock P, Corrigan E, Dorey P E and Rietdijk R H 1995Preprinthep-th/9501098)
[2] Braden H W, Corrigan E, Dorey P E and Sasaki R 1990 Affine Toda field theory and exactS-matricesNucl.

Phys.B 338689
[3] Cherednik I V 1984 Factorizing particles on a half line and root systemsTheor. Math. Phys.61997
[4] Coleman S 1976 Classical lumps and their quantum descendantsNew Phenomena in Subnuclear Physics(New

York: Plenum)
[5] Corrigan E, Dorey P E, Rietdijk R H and Sasaki R 1994 Affine Toda field theory on a half linePhys. Lett.B 333

83
(Corrigan E, Dorey P E, Rietdijk R H and Sasaki R 1994Preprinthep-th/9404108)

[6] Corrigan E, Dorey P E and Rietdijk R H 1995 Aspects of affine Toda field theory on a half-lineProg. Theor.
Phys. Suppl.118143

(Corrigan E, Dorey P E and Rietdijk R H 1994Preprinthep-th/9407148)
[7] Corrigan E 1998 Integrable field theory with boundary conditionsFrontiers in Quantum Field Theoryed Chao-

Zheng Zha and Ke Wu (Singapore: World Scientific)
(Corrigan E 1996Preprinthep-th/9612138)

[8] Corrigan E 1998 On duality and reflection factors for the sinh-Gordon modelInt. J. Mod. Phys.A 132709–22
(Corrigan E 1997Preprinthep-th/9707235)

[9] Corrigan E, Delius G W and Gibson B 1999 Boundary states in the sine–Gordon model, in preparation, see
http://www.mth.kcl.ac.uk/delius/bs.html

[10] Delius G W 1998 Restricting affine Toda theory to the half-lineJ. High Energy Phys.JHEP09(1998)016
(Delius G W 1998Preprinthep-th/9807189)

[11] Delius G W and Gandenberger G M 1999 Particle reflection amplitudes ina(1)n Toda field theoryNucl. Phys.B
554325

(Delius G W and Gandenberger G M 1999Preprinthep-th/9904002)
[12] Dashen R F, Hasslacher B and Neveu A 1975 The particle spectrum in model field theories from semi-classical

functional integral techniquesPhys. Rev.D 113424
[13] Dorey P E, Tateo R and Watts G 1999 Generalisations of the Coleman–Thun mechanism and boundary reflection

factorsPhys. Lett.B 448249
(Dorey P E, Tateo R and Watts G 1998Preprinthep-th/9810098)

[14] Faddeev L D and Korepin V E 1978 Quantum theory of solitonsPhys. Rep.421–87
[15] Fring A and K̈oberle R 1995 Boundary bound states in affine Toda field theoriesInt. J. Mod. Phys.A 10739

(Fring A and K̈oberle R 1994Preprinthep-th/9404188)
[16] Ghoshal S and Zamolodchikov A 1994 BoundaryS-matrix and boundary state in two-dimensional integrable

field theoryInt. J. Mod. Phys.A 9 3841
(Ghoshal S and Zamolodchikov A 1993Preprinthep-th/9306002)

[17] Ghoshal S 1994 Bound state boundaryS-matrix of the sine–Gordon modelInt. J. Mod. Phys.A 9 4801
(Ghoshal S 1993Preprinthep-th/9310188)

[18] Hirota R 1980 Direct methods in soliton theorySolitonsed R K Bullough and P J Caudrey (Berlin: Springer)
[19] Hollowood T J 1992 Quantum solitons in affine Toda field theoriesNucl. Phys.B 384523

(Hollowood T J 1991Preprinthep-th/9110010)
[20] Inami T, Odake S and Zhang Y-Z 1995 Supersymmetric extension of the sine–Gordon theory with integrable

boundary interactionsPhys. Lett.B 359118
(Inami T, Odake S and Zhang Y-Z 1995Preprinthep-th/9506157)



8614 E Corrigan and G W Delius

[21] MacIntyre A 1995 Integrable boundary conditions for classical sine–Gordon theoryJ. Phys. A: Math. Gen.28
1089

(MacIntyre A 1994Preprinthep-th/9410026)
[22] Penati S, Refolli A and Zanon D 1996 Classical versus quantum symmetries for Toda theories with a non-trivial

boundary perturbationNucl. Phys.B 470
(Penati S, Refolli A and Zanon D 1995Preprinthep-th/9512174)

[23] Rajaraman R 1982Solitons and Instantons(Amsterdam: North-Holland)
[24] Saleur H, Skorik S and Warner N P 1995 The boundary sine–Gordon theory: classical and semi-classical analysis

Nucl. Phys.B 441421–36
(Saleur H, Skorik S and Warner N P 1994Preprinthep-th/9408004)

[25] Sklyanin E K 1988 Boundary conditions for integrable quantum systemsJ. Phys. A: Math. Gen.212375
[26] Sklyanin E K 1989 Exact quantization of the sinh–Gordon modelNucl. Phys.B 326719
[27] Topor N 1997 Perturbation method for boundaryS-matrix in 2-D quantum field theoryMod. Phys. Lett.A 12

2951
[28] Zamolodchikov A B and Zamolodchikov Al B 1979 FactorizedS-matrices in two dimensions as the exact

solutions of certain relativistic quantum field theory modelsAnn. Phys.120253–91


